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Abstract— Design of robust systems needs to fully account for 
reliability physics, operational stresses and interactions thereof 
- while accommodating range of stresses from qualification to 
field. This research demonstrates the method of empirically 
analyzing system-internal parametric data of Solid-State 
Storage devices (SSD) with Machine Learning (ML). ML is 
shown to be a necessary, effective and novel means of 
proactively assessing and interpreting prognostics of the 
resilient system design. The methodologies and results also 
bear strong relevance to assessment of current and future 
designs for evolving usage models and new application areas. 

I. INTRODUCTION 
SSD technology is finding increasing adoption across 

enterprises, hyperscale data centers, high-performance 
computing architectures and consumer devices. Robust design 
of SSD memory subsystem can be modeled as an integrated 
resilient system comprising NAND/NVM (non-volatile 
memory) media with co-working controller-firmware enacted 
architecture to mitigate naturally expected defect growth over 
lifetime [1-2]. Shown in Fig. 1, the population robustness of 
SSD memory subsystem under data throughput stress has been 
empirically evaluated and modeled as an integrated system, 
from perspectives and methodologies of classical system 
reliability [3]. In this paper, we focus on the potential of SSD-
internal parametric data to enable prognostics and enhanced 
functionalities at the level of individual SSDs. There are 
significant practical benefits that can result from such an 
approach, such as individual SSDs proactively communicating 
prognostic information to the host(s) and associated tailored 
usage models. Crucially, if such parametric data is leveraged in 
alignment with system design and reliability physics such as to 
naturally embed fundamental causality in the prognostics, 
meaningful prediction frameworks spanning architectures and 
tuned to specific designs can be achievable. 

Robust design of SSD memory subsystem is predicated on 
a distributed architecture of internal data layout across silicon 
components (i.e. NAND Flash memory dies) and electrically 
isolable units (i.e. erase blocks) within such components, as 
shown in Fig. 2. Such a design of parallelized internal data 
layout achieves simultaneous benefits of enabling high 
throughput of data access for the host, as well as, a high system-
level robustness. The latter is achieved in SSD design with 
distributed resilience schemes leveraging independent, 
uncorrelated probabilities of generated defects across 
physically separate NAND dies and electrically isolable erase 
blocks, given sufficiently high-quality silicon. Associated 
considerations include NAND flash organization and 
operational idiosyncrasies (such as lack of direct overwrite), 
performance and application usage models requirements [1-2]. 

II. MACHINE LEARNING FRAMEWORK 
A.  Context of Design and Reliability Physics in Data 

Given the distributed architectural design of SSD memory 
subsystem: parameters representing multiple internal units (i.e. 
blocks, planes, dies) along with proactive and reactive 
management of tolerated defects - naturally result in high 
dimensional data representative of an SSD as a system. This 
high-dimensional parameter set lends well to a supervised ML 
classification framework - where the state of an individual SSD 
can be described in terms of the parameters fashioned as ML 
“features”. For prognostics, labeling each drive sample with 
their state of health (e.g. healthy, degraded, or failed) as the 
“target” ML variable can therefore complete a supervised 
classification framework based on appropriate training data. It 
is however apparent that the quality and context of training (and 
validation) data is key to the process of algorithmic learning, 
especially when such data describes a complex engineered 
system, such as SSD. In such a context, training on 
observational or noisy data can run the risk of fitting a model to 
data that may reflect an unknown, embedded design flaw or a 
missed validation of complex system design. This is because a 
trained ML model does not necessarily nor automatically reflect 
a causal relationship between the feature set and the target 
variable; yet can strongly leverage correlational relationships to 
deliver predictions. Hence, in our approach, we obtained clean, 
noiseless data from a design of experiment (DoE), backed by 
physical characterization and well understood failure physics. 
On the other hand, challenges and opportunities in ML-based 
prognostics on large-scale SSD populations in data-centers 
have been effectively explored in [4], wherein notable 
differences between SSD design classes and specific models 
were clearly evident. 

For enabling prognostics fundamentally aligned with 
reliability physics and robust system design, data from our DoE 
resulted from accelerated throughput stresses along usage 
model perspectives, on N = 120 enterprise-class SSDs with 
mature design and qualification. Fig. 3 shows Throughput (i.e. 
Drive Writes per Day or, Program/Erase Cycles per day) 
Acceleration Coefficient (TAC) stress causing SSDs to fail 
within designed lifetime, from fundamentally well understood 
physics of word-line shorting precipitated by high cycling rate 
of NAND program operations [3, 5]. Applying throughput and 
JEDEC JESD219 enterprise [7] workload accelerated stress for 
sufficiently long duration of 1.25 years, significant and 
expansively distributed growth of program status failures, 
defective blocks and die failures eventually resulted in 
breaching the distributed resilience inherent in robust SSD 
design. Fig. 4 affirms that despite the fundamentally stochastic 
failure mechanism of shorted word-lines, component Failure in 
Time (FIT) rate correlated with the system-level stressor. 
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Thereafter, detailed failure analysis of samples as exemplified 
in Fig. 5, accompanied definitive labeling of the ML target 
variable as either healthy or failed. Thus, population system 
reliability was ascertained in coherence with the stress-strength 
interaction principle of reliability science, as shown in Fig. 6. 

B. Machine Learning Model 
The focus on aligning algorithmic training with SSD design 

and reliability physics makes a highly interpretable ML model 
a crucial necessity [5]. For good interpretability balanced with 
high performance; nonlinear, high-dimensional feature space; 
natural feature interaction; and limited availability of data 
samples - Random Forest (RF) was chosen as the ML model 
[6]. RF offers the balance of bias and variance with natural 
resistance to over-fitting and has found significant applications 
across other similar domains of statistical learning.  

III. ML PROGNOSTICS RESULTS AND INTERPRETATION 
The classification results measured by various ML metrics 

are shown in Table I, showing excellent (> 90 %) performance. 
This result demonstrates the possibility of prognostics with 
embedded causality, by being aligned with SSD design and 
physics. The full feature set’s categories spanned counts of 
proactive resilience function activations, managed defect 
measures and reactive resilience function activations [6]. 
Feature importance metrics were used as a methodologically 
sound and practically meaningful technique for model 
interpretation. While the originally available set comprised ~ 40 
features, it was condensable to ~ 25 features based on RF’s Gini 
Index based feature importance ranking, and also interpreted 
based on design knowledge, as shown in Fig. 7. A further 
significant feature set compression was possible with 
Permutation Feature Importance (PFI), by excluding features 
with PFI £ 0, and resulting in a succinct set of ~10 features, as 
also shown in Fig. 7. Such principled methods of feature and 
dimensionality reduction, and associated model compression, 
significantly improves model interpretability. These methods 
are superior for model interpretability in alignment with domain 
knowledge, relative to other methods of dimensionality 
reduction (such as Principle Components Analysis) - by 
retaining a subset of the original, contextually meaningful 
features. In this problem domain, the feature set is naturally 
multicollinear by virtue of resilient system design [8], enabling 
such compression while retaining model performance. 

In this context of resilient design, evident dominance of 
features associated with proactive firmware resilience function 
activations is in accordance with robust design. As throughput 
and workload stresses generated more physical defects, 
proactive resilience functions more frequently activated prior to 
eventual failures. Conversely, proactive resilience activations 
are also most predictive of classifying failures from survivors. 
This fact is also clearly affirmed in the example distribution 
analysis shown in Fig. 8, where more of the failing samples 
show greater activation of the resilience function. This shows 
that the distributions are not simply different between the 
classes (thus enabling ML classification), but they are also 
meaningfully aligned to the context of resilient SSD design, 
applied DoE stress and interactions thereof. On the other hand, 
individual counts of managed physical defects of NAND 
contain less predictive information because of the distributed, 

resilient architecture of SSDs [1,2,6,8]. Thus, any expectation 
of grown defective block counts alone being predictive of SSD 
health is simplistic without consideration of the larger context 
of distributed design and architecture. The fact that the two ML 
classes lack fully non-overlapping distributions for any of the 
features, as in Fig. 8, further underlines the distributed 
architecture, as well as the necessity and efficacy of ML for 
prognostics [6]. Fig. 9 shows a visualization of two key 
informative features, illustrating their decision boundary suited 
for non-linear ML models, including deep neural networks [6]. 

Temporal prognostics of individual SSD health is shown in 
Fig. 10, by assessing classification metrics from historical 
parametric data gathered during the DoE. The observed gradual 
degradation in metrics is expected because of diminishing 
classifiable information content in the features at milder 
degradation states, when the eventually failing samples more 
closely resembled the less degraded samples. Based on such 
prognostics, effective communication between individual SSD 
to the host can be possible prior to the point of actual failure. 
Workload effects have also been interpretably analyzed in [8]. 

IV. SUMMARY AND CONCLUSIONS 
We have discussed our interpretable approach to, and 

demonstration of, design and physics aligned ML based 
prognostics of SSD technology. We point out that such an 
approach embeds causality in the prognostics by ML, and 
additionally aids the validation of robust system design through 
the interpretation process. Thereby, the methodology lends well 
to a general framework for analysis, prognostics and tailored 
usage of complex system designs, such as for SSD technology. 
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Fig. 6. Conceptual underpinning of stress-strength interaction in 

precipitating system-level failures of the robust system. The region of 
interaction between applied throughput and workload accelerated 

stresses, and the designed resilience strength of the system (SSD), led 
to the precipitated failures from the DoE. 
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Fig. 1. Surface of population system reliability as a function of 
throughput acceleration coefficient (TAC) and stress duration, derived 

from DoE data and modeled as an inverse power law [3]. 

 
 
 

Fig. 2. Flash memory organization in a distributed 
architecture within solid-state storage, reproduced from [1]. 
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Fig. 3. Usage model aligned spectrum of applied stressor, with 
failures resulted from physics aligned understanding of robust 
system design and backed by causational failure analysis [3].  

 
Fig. 4. Component NAND failure FIT rate correlated with host-level 
stressor metric of TAC (or, Program Erase Cycling rate), affirming 

the physics of system stress [3]. 
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Fig. 5. Topography of grown defects across span of NAND dies 
and erase blocks of a representative SSD in final failed state. The 

accelerated stress driven defects were largely stochastically 
distributed, except for dies 16 and 18 on different channels of this 
sample SSD bearing highly dense and broad defect distributions. 
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ML Classification Metric Performance 
Accuracy 94 % 

True Positive (Recall) 95 % 
False Positive Rate 6 % 
True Negative Rate 94 % 
False Negative Rate 5 % 

Precision 92 % 
F1 Score 93 % 

Table I. ML classification performance for failures (“positive” 
ó failing samples) from throughput accelerated stress of DoE. 



 

 
Fig. 7. Feature importance assessments by Gini Index measure of RF (left axis) versus Permutation Feature Importance (right axis), illustrating an 

effective approach to model interpretation and feature-set compression. Removing features with PFI £ 0 enables significant feature reduction, 
while retaining a subset of original, contextually meaningful features and model performance (F/W ó Firmware implemented resilience). 
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Fig. 9. Non-linear decision boundary in 2-D feature space 
illustrated for two of the features, implying optimality of 
non-linear ML models for classification including deep 

neural networks, aside from Random Forest. 

 
Fig. 8. Normalized ML feature denoting an architected resilience function 

activation during DoE stress illustrates partial distribution-level distinction between 
failing and surviving samples/classes. While all ML features bear such significantly 

overlapping distributions, more of the failing samples have larger values than the 
surviving samples. 
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Fig. 10. Temporal prognostics in terms of ML performance metrics evaluated on historical parametric data prior to actual failure or stress 

suspension, demonstrating predictive health assessment of individual SSDs. This conservative assessment was made based on mixed write 
workload stresses from the industry standard JESD219 enterprise and a pseudo-sequential workloads (the latter with highly imbalanced classes 
due to few failures, degrading the model performance) [6]. Such workload impacts have been separately analyzed with interpretable ML in [8]. 
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